Beneris

Project no: 022936
Project acronym: Beneris
Project title: Benefit-risk assessment for food: an iterative value-of-information approach

Instrument: STP-Specific Targeted Project

D25 Decision support system

Due date of deliverable: Actual submission date:	$\mathbf{1}$ December, $\mathbf{2 0 0 7}$ $\mathbf{7}$ November, $\mathbf{2 0 0 7}$ (paper submission with the 2nd-year report)
Dissemination level:	$\mathbf{P U}$
Start date of project:	April, $\mathbf{1}^{\text {st }} \mathbf{2 0 0 6}$ Duration:
	$\mathbf{3 , 5}$ years

Organisation name of the lead contractor for this deliverable: Technical University of Delft

D25 "Decision support system" was delivered as a presentation by TU Delft in the Midterm meeting (Helsinki, November 7-9, 2007). The presentation slides are shown below.

Beneris

Method and Models

Roger Cooke and
Patrycja Gradowska Dept. of Mathematics

TU Delft
5 Nov 2007

Beneris

Multiple stressors, Multiple endpoints

$P=$ Prob of endpoint

$\left(x_{1}, x_{2}, \ldots, x_{y}\right)$ values of effector variables

$$
\begin{align*}
\ln \left(\frac{p}{1-p}\right)= & \left.f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \approx f\left(x^{0}\right)+\sum_{i=1}^{n} f_{i}^{(1)}\right)\left(x^{0}\right) \cdot\left(x_{i}-x_{i}^{0}\right)+\sum_{i=1}^{n} \frac{f_{i}^{(2)}\left(x^{0}\right)}{2!} \cdot\left(x_{i}-x_{i}^{0}\right)^{2}+ \\
& +\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} f_{i}^{(2)}\left(x^{0}\right) \cdot\left(x_{i}-x_{i}^{0}\right) \cdot\left(x_{j}-x_{j}^{0}\right)+H O T \tag{1}
\end{align*}
$$

Beneris

- Hope: overall model can:
- Focus data collection
- Help us think about interactions
- Help us think about Benefits as well as Risks
- Non-Parametric continuous Bayesian Belief Nets can provide modeling platform

Beneris

Example Questions

"Suppose that the baseline lifetime probability of developing cancer is pC_{0}. If the yearly intake of dioxins and furans is doubled (relative to baseline) and other variables remain unchanged, what are the $5 \%, 50 \%$ and 95% quantiles of your subjective probability distribution for the percent change in the probability of cancer in the remaining lifetime, i.e, the number z such that Prob. Cancer in Remaining Life $=p C_{0}+z \times p C_{0}$?"

Suppose that the baseline lifetime probability of developing cancer is pC_{0}. If the yearly intake of dioxins and furans is doubled (relative to baseline) and also the the yearly intake of nicotine is doubled (relative to baseline), other variables at the baseline level, what are the $5 \%, 50 \%$ and 95% quantiles of your subjective probability distribution for the percent change in the probability of cancer in the remaining lifetime, i.e, the number z such that Prob. Cancer in Remaining Life $=\mathrm{pC}_{0}+z x$ $p C_{0}$?"

