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1. Introduction

Over the past decades, a large number of studies identified effects of air
pollution on public health (Brunekreef & Holgate, 2002; Pascal, 2009, World
Health Organisation (WHO), 2004). Exposure to ambient air pollution has been
linked to various health outcomes varying in severity from mild effects on the
respiratory tract and pulmonary function to emergency room visits, hospital
admissions and even mortality (Pope & Dockery, 2006).  Serious risks have
been documented especially for the very young and older population as well
as those with cardiorespiratory diseases such as asthma and heart disease.
Epidemiological evidence also suggests a significant public health burden
through the reduction of life expectancy of the average population by one or
more years due to exposure to high levels of outdoor air pollution. A recent
WHO review underlined that current levels of particulate matter
concentrations measured across Europe pose a significant risk to human

health (World Health Organisation (WHO), 2003).

Monitoring air pollution levels, especially in urban areas, is therefore
important in order to assess the impact on human health. Routine monitoring
networks exist in most urban areas and are used to monitor the general
pollution level within a city and, to determine if ambient air quality standards
are exceeded. Routine monitoring networks consist of only a few stations, and
in the case of PMiuo of only one sampler in most British cities. These sample
densities are not efficient enough to assess pollution levels in an effective

manner with regard to human health impact. Air pollution levels can change
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dramatically within a short space. Some research suggests that the intra-
urban variability in air pollution concentration may be larger than between
cities (Miller et al., 2007). Very high levels are measured in short distances
from emitting sources such as roads and industrial sites whilst, giving the
right meteorological conditions, the pollution levels can drop very steeply
with distance from a polluting source (Seinfeld, 1986). Most routine
monitoring networks are thus inadequate for representing the spatial

variability in exposure that exists in urban areas (Gilbert et al., 2005).

Many epidemiological studies, therefore, do not solely rely on the routine
monitoring network. As mentioned above, routine monitoring networks are
created in order to monitor air quality standards. The monitors are therefore
mostly located in areas of high concentrations and hot spots such as heavily
trafficked street locations and industrial areas. Epidemiologists, however, are
mostly interested in the effect of air pollution on the health of the general
population or individuals. Their interest, therefore, lies in the spatial
variation of the concentration range as well as the pollutant concentration
close to the population under study. Thus, one of the main shortcomings of
epidemiological studies is often the correct exposure attribution. Relying on
the routine monitoring network, exposures have been characterised by only
one measured concentration across a city, assuming homogenous exposure
within an urban area (Dockery et al., 1993). But this crude proxy may result in
a significant error in exposure, which may lead to substantial bias in exposure
response relationships (Monn, 2001). Some epidemiological studies, therefore,
use a targeted, study specific monitoring program. This might have the
disadvantage of additional cost and limited temporal coverage but given the

correct monitoring set-up should result in improved exposure estimates.

The type of pollutant monitored strongly influences the character and

density of the monitoring networks. NO: concentrations are generally
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measured using NO: tubes. These are passive samplers, which can be set up
very easily in the field and so are very cost effective. With little expenditure
of time and experience, NO: tubes can be mounted at almost any location
such as lampposts or rain pipes (see Figure 1a). PMio monitors, on the other
hand, are active samplers that use pumps and need electricity to run, which
limits the locations where they can be set up. Typical locations might include
shop fronts or residential gardens with easy access to electricity supply (see

Figure 1b).

Source: Gioia Mosler

Figure 1: Example of monitor locations: a) NO: tube mounted at rain pipe, b) PMu

monitor (Harvard Impactor) in residential garden

PMio monitors are more time intensive to set up and significantly more
expensive than NO: tubes. These factors influence the density of monitoring

stations to measure air pollution levels in a city. In the past, epidemiological
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studies have typically used between 40 and 100 NO: tubes across a city
depending on its size and the number of inhabitants (see Table 1). The
monitoring sites are typically categorised into different site types with
approximately 60% of monitoring stations being traffic sites, 35% urban
background sites and 5% would be used to measure regional background
NO: concentrations. When collecting PMio, budget and time constraints
would usually only permit the collection at less than five sites for most
epidemiological studies. Given the same monitoring density, the price for a
PMuo active sampler network is on average three times higher than the cost for
a NO: passive sampler network (Hoek et al., 2008). Study specific PMio
monitoring networks are, therefore, not frequently used in epidemiological
studies and PMio measurements are more often taken from routine
monitoring networks instead (Briggs et al., 2010; Glorennec & Monroux, 2007;

Pope et al., 2002).

Practical reasons are commonly the main motivation behind the
monitoring networks wused in epidemiological and indeed most
environmental studies. Costs, ease of access, time effort and so forth play an
overriding role in the set-up of these networks than the representativeness of
the air pollution variation within an urban area. But what would be the ‘right’
monitoring strategy if none of these factors have to be considered? Which set-
up strategy would provide the best results to most effectively attribute correct
exposure estimates to the population? Is there a drop-off point in the number
of monitoring stations that result in a dramatic decrease in accuracy?
Researchers rely mostly on past experience and guidance from other
researchers when setting up study specific monitoring networks. No rigorous
methodology has been determined that would answer these questions and
provide guiding principles for the set-up of an effective study specific

monitoring network.
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1.1 Aims and Objectives

The objective of this study is, therefore, to explore and assess the
representativeness of air pollution monitoring networks in an urban setting.
Particular focus is given to the misclassification of peoples’ exposure to
particulate matter (PMio). Exposure misclassification is assumed to be due to
the monitoring network. Other causes of exposure misclassification such as
air pollution modelling error and uncertainty, temporal variation or people’s
different time-activity patterns, are not considered in this particular study but
are discussed elsewhere in the literature (Baxter et al., 2010; Zeger et al., 2000).
Although environmental concentration levels do not necessarily equate to
individual exposures they will be used in this context throughout this study,

as is the case in most spatial epidemiological studies.

The specific aims of this study are a) to identify different environmental
sampling strategies and evaluate their use for epidemiological analysis, and
b) to experiment with different air pollution monitoring networks and
evaluate them both in terms of predicting air pollution concentration in an
urban environment and in terms of exposure misclassification. In particular,
the study provides answers to the question of the best monitoring network
strategy to predict both the exposure distribution within an urban area as well

as individual exposure.

1.2 Monitoring network strategies

Various monitoring network strategies have been discussed in the
literature. They range from haphazard or random sampling over monitoring
in a grid pattern or purposive sampling in areas of interest (Gilbert, 1987; Lioy,
1999). Haphazard sampling is a technique where any discretionary location

can potentially become a sampling location. This encourages the selection of
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air pollution monitors at sites conveniently located in terms of both costs and
effort. Haphazard sampling, however, is only appropriate if the monitored
concentration surface is homogeneous in space and time because otherwise
systematic bias can be introduced which hinders or even invalidates study
results (Piegorsch & Bailer, 2005). A homogeneous concentration surface is,
however, not the case for most urban areas and therefore this technique is

rarely applied in epidemiological studies.

A second sampling strategy referred to in the literature is probabilistic
sampling (Gilbert 1987). This is the general term for sampling strategies based
on various degrees of randomness. Probabilistic sampling includes strategies
as diverse as simple random sampling or systematic gridded sampling. The
term simple random sampling describes the technique where each location
within an urban area has an equal chance of being chosen as a monitoring
site. This underlies the logic that if samples are taken randomly it balances out
any uncontrolled systematic bias. Simple random sampling is only effective
where there are no major trends or spatial variation pattern in air pollution
concentrations. It is therefore only occasionally applied in urban areas
because the random sampling error, which arises due to environmental
variability not being picked up by the random selection process, is potentially
very high. Although this approach has been used in an epidemiological
context (Rotko et al., 2000), generally it is confined to an environmental context
when, for exampling, sampling soil or water (Downes, 2010; Mattuck et al.,

2005; Niemi & Niemi, 1990).

Gridded monitoring networks, also known as systematic monitoring
networks, select the first monitoring station at random. Based on this first
location, all further monitoring locations are systematically allocated based on

a grid of a specified distance. Systematic sampling provides uniform coverage
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Table 1: Characterisation of monitoring strategies of selected epidemiological studies
Reference Study area No of Monitoring strategy Pollutant
monitoring sites
(Hoek et al., 1997) Umea, Sweden 2 Haphazard influenced by PMio,
Malmoe, Sweden 2 purposive decisions: one Black smoke
Oslo, Norway 2 urban and one rural
Kuopio, Finland 2 location
Amsterdam, Netherlands 2
Berlin, Germany 2
Hettstedt, Germany 2
Budapest, Hungary 2
Katowice, Poland 2
Cracow, Poland 2
Prague, Czech Republic 2
Teplice, Czech Republic 2
Pisa, Italy 2
Athens, Greece 2
(Oanbh et al., 2006) Bangkok, Thailand 4 Haphazard influenced by PMa2s, PMi1o
Bandung, Indonesia 5 purposive decisions based
Beijing, China 4 on land use
Chennai, Indonesia 3
Manila, Philippines 5
Hanoi, Vietnam 3
(Rotko et al., 2000) Athens, Greece 50 Simple random PMa2s, CO, VOCs
Basel, Switzerland 50
Grenoble, France 54
Helsinki, Finland 201
Milan, Italy 50
Prague, Czech Republic 50
(Franco-Marina et Mexico City, Mexico 501 Simple random Indoor radon
al., 2003)
(Hirsch et al., 2000)  Dresden, Germany 182 Systematic: 1x 1 km grid Benzene
(Martin et al., 2006) Valladolid, Spain - Systematic: 250 x 250 m Noise
grid
(Lebret et al., 2000) Amsterdam, Netherlands 80 Purposive based on NO2
Huddersfield, UK 80 distance to roads, includes
Poznan, Poland 40 background stations
Prague, Czech Republic 80
(Hoek et al., 2002) Netherlands 40 Purposive based on traffic ~ PM2s
Stockholm, Sweden 40 density, includes
Munich, Germany 42 background stations
(Kanaroglou et al., Toronto, Canada 100 Purposive based on NO2
2005) population density using a
location-allocation model
(Jerrett et al., 2007) Toronto, Canada 100 Purposive based on NO:2
population density using a
location-allocation model
(Madsen et al., Oslo, Norway 80 Purposive based on NO:2
2007) population density,
includes background
stations
(Wheeler et al., Windsor, Ontario, Canada 54 Purposive based on NO2, SOz, VOCs
2008) population and traffic

density, includes
background stations
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of the study area and therefore is likely to result in more accurate exposure
estimates. The frequency of the samples, i.e. the spacing of the grid, is a key
factor. As with the simple random sampling method, this approach is rarely

adopted in epidemiological studies (Martin et al., 2006).

Purposive sampling, or judgemental sampling, is the subjective selection
of monitoring sites by individuals based on knowledge and/or the objectives
of the study. Purposive sampling is suitable when evaluating specific
environmental concentrations such as high-end exposures or a specific risk
associated with a target population. Monitoring sites that are representative
for the investigated concentration range or the average population under
study are selected. It is important, therefore, that the sample purpose and
objectives are clearly defined before deciding on monitoring locations. This
monitoring strategy is frequently used in environmental epidemiological
studies amongst others to model air pollution using land use regression

models (Madsen et al., 2007; Wheeler et al., 2008).

Other sampling methods often applied in environmental sampling but
rarely used in environmental epidemiological studies such as line-intercept
sampling (Khan, 2008; Mackey & Hodgkinson, 1995; Piegorsch & Bailer, 2005) or
geostatistical sampling methods (Brus & Heuvelink, 2007) are summarised

elsewhere (Wang et al., 2008) and not considered here.

As these examples show, the main points to consider if setting-up a
monitoring program are a) the objective of the sampling program, b) the cost
effectiveness that ideally would allow achieving an acceptable level of
representativeness at a specific cost and c) the spatial pattern of
concentrations. The last point is an important concern when monitoring air
pollution because of the complex nature particularly in urban areas where

topography, surface roughness and meteorology combine to create a complex
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spatial and temporal pattern. It is, therefore, vital to evaluate the magnitude

of sampling error for different designs and levels of effort.

2. Methods

2.1 The urban simulation

An urban simulation is used to investigate the hypothetical question of
the representativeness of various monitoring networks. A simulation has an
advantage over a real-world urban setting in that the exact air pollution
concentration is known for every location in the city. Modelled PMio
concentrations based on a monitoring network can be compared to the known
concentrations. Such a comparison is not possible in a real-world setting
because the air pollution concentrations are obviously largely unknown apart
from the concentrations measured at the monitoring sites, which invariably

inform the PMio model.

The wurban simulation used in this study is SIENA, a GIS-based
SImulation to support ENvironmental health Analysis. SIENA is a
representation of an average medium sized city in Great Britain. Real-world
sample cities around Great Britain were explored in terms of their spatial
structure. Design rules were then extracted which informed the modelling
process of SIENA within a GIS. SIENA consists of core data that includes
information on land cover, topography, transportation networks and
population densities, all at a 25 x 25 m grid level (see Figure 2). These data
were modelled using a probabilistic modelling approach based on rules
derived from the real-world sample cities. Additional, contextual data was
added to SIENA, including information on daily traffic counts for the road

network as well as on meteorological conditions such as average temperature,
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wind speed and wind direction. Hourly PMio concentrations were then
derived using both core and contextual data as input. The widely used
dispersion model ADMS-Urban was employed to model the average hourly
PMio concentrations for a two-week period in August at the 25 x 25 m grid

level.

Minor road density
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Figure 2: Data structure of the urban simulation: topography (upper left), transportation
network and minor road densities (upper right), land cover (lower left) and population (lower

right)

2.2 Observed exposure distribution

Based on the given data structure of SIENA, exposures for each

individual in the city can be established. These exposures are the observed
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exposures to which all consequently modelled or estimated exposures can be
compared. PMio exposures are established for each individual at their home
address by extracting the PMio concentration for each address location from
the PMio concentration surface. Average PMio concentrations measured over

a two-week period at 10am on a weekday morning are used for this study.
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Figure 3: Observed exposure profile

Concentrations peak around this time of the day due to the concentration
built-up from the morning rush hour and have, therefore, important health
implications. Concentrations in the urban area range from 17 ug/m3 in the
urban hinterland to 157 pg/m?® close to the motorway. Individuals are

grouped into ten exposure groups as shown in Figure 3.

Descriptive statistics such as mean, standard deviation and skewness are

calculated in order to describe the distribution. This observed exposure
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distribution provides the baseline distribution to which all other estimated

exposure distributions will be compared.

2.3 The monitoring network set-ups

To explore the representativeness of monitoring networks the three main
sampling strategies applied in epidemiological studies — purposive sampling,
simple random sampling and systematic gridded sampling - are explored
using various monitoring set-ups for each sampling strategy. Based on these
monitoring set-ups, exposure profiles are calculated for the urban population
of the study area based on PMio concentrations, measured at the nearest
monitoring stations. These exposure estimates are compared to the observed
exposures in order to evaluate the performance of the different monitoring

networks by assessing accuracy and sampling error.

Deriving accurate exposure estimates for an urban population is one of
the most important and demanding issues in an environmental
epidemiological study. Various methods have been reported in the literature
of how best to attribute concentrations to individuals. They range from
simple measures like proximity to roads or monitoring stations to more
sophisticated interpolation techniques such as kriging and land use regression
modelling to personal monitoring of individuals. All these methods have
study-specific advantages and disadvantages and there is no golden standard,
which can be applied to every study scenario. This study attributes
individuals with the ambient PMio concentration measured at their nearest
monitoring station to avoid wuncertainty introduced by the various
interpolation and modelling techniques. Any errors in exposure assignment
will be due to the chosen monitoring station network rather than the applied

interpolation technique.
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Four different purposive sampling approaches, using non-probabilistic
sampling technique where monitoring locations are chosen based on prior
knowledge, are applied here. Three approaches locate the monitoring sites in
areas of high emissions from road traffic. Road emissions are estimated with

increasing in accuracy as:

a) proximity to roads, measured as the distance of the 25x 25 m grid cell

centroid to the nearest road,

b)high road density, measured as main and minor road density per

25x 25 m grid cell (m/m?),

c) high traffic density, expressed as vehicle kilometres travelled per 25 x

25 m grid cell on minor and main roads.

The last approach places the monitoring stations in areas of high population

density, measured as the number of people per 25m grid cell.

All four approaches locate the monitoring stations in randomly selected
25 x 25 m grid cells of SIENA that fall in the highest percentile, i.e. nearest to
road or highest density. Using each method, a number of monitoring
networks are designed and implemented with monitor numbers ranging from
5, a situation not unfamiliar in most studies, to 50 PMio monitoring stations, a

situation desirable but not applied in many studies (see Table 1).

In addition to locating monitoring stations based purely on the purposive
sampling strategy, many epidemiological studies also use background
stations in order to estimate pollution concentrations away from the main
emitting sources (Hoek et al., 2002; Madsen et al., 2007; Wheeler et al., 2008). To
reflect this procedure, background stations are added to the 25 best
performing purposive monitoring networks. The background stations are

randomly located in areas of PMio concentrations below the SIENA mean and
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added to the already established monitoring network. Between one and five
background monitoring stations are added to each specified monitoring
network. This results in a total of 309 different purposive monitoring

networks, of which 125 networks have urban background stations.

For the systematic gridded sampling strategy, monitoring grids were
developed that range from 1 x 1 km to 5 x 5 km cells increasing in 125 m
increments. In total, 49 gridded monitoring networks are established. The
25 x 25 m grid cells of the urban simulation are used as building blocks where
the grid cells are aggregated to form the monitoring grid. In all cases, the
centroids of the monitoring grid are used as location for the PMio monitors.
The distances are chosen to obtain a realistic number of monitoring stations
varying from 6 to 154 stations. A denser grid than 1 x 1 km results in a
network of too many PMio monitoring sites to be practically and financially
feasible in most epidemiological studies, while a density lower than 5 x 5 km

would result in fewer than five stations, the threshold for this study.

The simple random monitoring strategy selects a representative sample
by using chance selection so that biases will not systematically alter the
sample. Using this approach, stations are randomly selected from the
25 x 25 m grid cells without any outside input, varying in numbers from 5 to
50 monitoring stations. Again, PMio monitoring sites are located at the
25 x 25 m grid cell centroid. In order to explore how representative the
obtained exposure profiles are, the selection process is repeated five times,
always extracting random stations. This results in 230 monitoring networks
based on the simple random strategy. For each established monitoring
network (Figure 4) exposure profiles are then estimated for the population in
SIENA by assigning each individual the PMio concentration measured at the

nearest monitoring station to their residential address.
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Random sampling strategy

Strategy specifications:

Randomly selected monitoring locations; number of mmonitoring stations: N =5, ..., 50;
Total nurmber of monitoring networks aralysed: 230

Gridded sampling stratagy

Strategy specitications:
Gridded menitering locations; lowest grid density 53¢ 5 km (6 stations), highest grid density 1x 1km

(154 stations); incretnents 125 m
Total number of monitoring networks analysed: 49

Purposive sampling strategy

ME: 33 (3 badeground); road distance | fus: 50; high road density [
m i TR o g =

Srategy specifications:

Four approaches based on doseness to road, high road density, high traffic density and high poplutaion density;
Number of stations for each approach: N =5, .., 50; Background stations (N = 1, ., 5) added for selectad natworks
Total number of monitoring networks analysed: 209

Figure 4: The monitoring network set-ups
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2.4 Statistical analysis

The representativeness of the various monitoring networks is assessed
from two different angles. The statistical analysis assesses a) which
monitoring networks result in the best exposure distribution and b) which
monitoring networks allow the best estimate of individual exposure. These
two aspects do not necessarily have to be the same. The distribution of the
estimated PMio exposures can be very similar to the distribution of the
observed PMio exposures but highly exposed individuals, for example, are
attributed with low exposure estimates and vice versa. This difference is
especially important in an epidemiological context. =~ Correct exposure
distributions are important for estimating exposures for ecological or
population based analysis, when for example comparing population’s
exposure in different urban areas (Dockery et al., 1993; Kousa et al., 2002;
Kunzli et al., 2000). Individual or small scale analysis, on the other hand, need
exposure estimates to be as accurate as possible at the individual level, which
is much more difficult to achieve (Iniguez et al., 2009; Oglesby et al., 2000). It
is therefore important to investigate both aspects of potential exposure

misclassification.

Several statistical measures are required to evaluate the performance of
the monitoring networks in terms of both exposure distribution and
individual exposure. A hierarchical model is developed for the statistical
analysis to evaluate different aspects of network performance such as
differences in shape and location of derived exposure distributions,
correlation of individual exposure or spatial variation in performance. All of
these aspects are important to assess the representativeness in terms of both
exposure distribution and individual exposure, but the hierarchical model

provides an effective method to evaluate the different monitoring approaches
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by excluding incrementally poorly performing monitoring networks and

further in-depth analysis of the better performing networks (see Table 2).

Table 2. Statistical measures used in hierarchical analysis of exposure distribution and

individual exposure

Exposure distribution assessment Individual exposure assessment

1. layer e Q-Q plot e Pearson’s r correlation

¢ Spearman’s rho correlation

2. layer ¢ Kolmogorov-Smirnov test e R?
¢ Independent samples t-test ¢ RMSE, NMSE
e Descriptive statistics: minimum, e Mean bias, Normalized mean bias, Mean

maximum, median, mean, 5/95t" percentile  fractional bias, Fractional bias
ratio e Fa2

¢ Cumulative frequency plot

3. layer e Descriptive statistics for each exposure e Error map
tertile: minimum, maximum, median, mean, e Moran’s I: global and local

5th/95th percentile ratio ¢ Kappa statistic

In the first hierarchical layer, monitoring networks are identified that
show poor representativeness of PMio exposure. Basic measures of
distribution comparison and correlation are used to eliminate poorly
performing monitoring networks from the further statistical analysis. In
order to test if the observed and estimated exposures have similar
distributions, Q-Q plots are used. Individual level assessment is carried out
using Pearson’s r and Spearman’s rho correlation. These relatively basic
measures of performance are used to give a first indication of the performance

of the monitoring networks (Chambers et al., 1983).

Q-Q plots are produced to explore the shape of the exposure distributions
derived from the various monitoring networks and compare those to the

shape of the observed exposure distribution. The Q-Q plot tests if two
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distributions are similar in which case the Q-Q plot will approximately be a
straight line (x = y). Here, the Q-Q plots map the various exposure
distributions against a normal distribution. The observed PMio exposure
distribution is extremely skewed but approximately follows a log-
transformed Gaussian distribution (Figure 5) - a pattern also described for
urban PMio exposure distributions around Europe (Giavis et al., 2009). All
exposure distributions are, therefore, log-transformed as well as centred and
Q-Q plots generated for the observed exposure distribution as well as the 488

estimated exposure distributions based on the various monitoring networks.
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Figure 5: Observed PMi exposure distribution and log-transformed and centred

distribution

Both Pearson product-moment correlation coefficient (Pearson’s r) and
Spearman’s rank correlation coefficient (Spearman’s rho) are computed to
assess the correlation between the observed and estimated PMio exposures.

Pearson’s r is sensitive to a linear relationship between the observed and
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estimated variables and best works if the data is normal distributed.
Spearman’s rho on the other hand, is a non-parametric measure of correlation
and does not make assumptions about the particular relationship between the

variables.

Only those monitoring networks whose derived exposure distribution is
similar to the shape of the observed exposure distribution (Q-Q plot
approximately follow a straight line) and in addition have a medium to large
correlation coefficient are considered for further statistical analysis.
Correlations coefficients are considered medium to large if Pearson’s r > 0.3

and Spearman’s rho r > 0.5 (Cohen, 1988).

In the second hierarchical layer, any remaining monitoring networks are
assessed using tests chosen to evaluate statistically and visually the exposure
distributions including both shape and location. Individual exposure is
examined in more detail by quantifying the differences between observed and
estimated individual exposure derived from the different monitoring

networks and determining the direction of this difference (Hanna, 1993).

The performance of the monitoring networks in terms of predicting
exposure distribution is assessed using the Kolmogorov-Smirnov test and
Independent samples t-test. The Kolmogorov-Smirnov test establishes if two
independent samples come from the same population. The two samples are
represented by the observed exposure values and the estimated exposure
values. PMio concentrations are again log-transformed and centred because
the test is sensitive to diversion from normal distribution. The Independent
samples t-test tests the null hypotheses that the mean of the two normally
distributed populations are equal. Because normal distribution is assumed,
again, the log-transformed data is used. But the data is not centred because

the mean for each sample would be zero. In addition, the distributions as
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statistically described in terms of minimum and maximum PMio
concentrations, median and mean. The 5%/95% percentile ratio is compared
for exposure distributions derived from the monitoring networks and the
original PMiwo concentration surface. Cumulative frequency plots are

produced to explore the distributions visually.

As a measure of individual exposure, correlations between the observed
PMio exposures and the estimated PMio exposures are evaluated using the
coefficient of multiple determination (R?). The root mean square error
(RMSE) and the normalised mean square error (NMSE) allow quantification
of the difference between the observed and the estimated individual exposure
values. Furthermore, the mean bias, normalised mean bias and the mean
fractional bias are calculated. The fractional bias is a measure of performance
often recommended in the model evaluation literature to determine the
direction of the error. Values for factual bias are between -2.0 (extreme under-
prediction) and 2.0 (extreme over-prediction). Values of the fractional bias
that are equal to -0.67 are equivalent to under-prediction by a factor of two,
while values that are equal to 0.67 are equivalent to over-prediction by a
factor of two. Root mean square error scores are robust to variations in shape
of the data distributions. R? is sensitive to the distribution of data. No one
indicator can evaluate all aspects of the model and there is no consensus in
the literature regarding which of the above is the best measure to evaluate
model performance. All performance measures discussed are therefore used
in conjunction because this increases the ability to evaluate all aspects of
performance of the monitoring networks. The metrics used for this part of the

assessment are summarised in Table 3.
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Table 3: Calculated measures of model performance

Root mean square error m?3) (RMSE
q (ng/m3) ( ) — Zliv:1(Eo —E,)?
N

Normalised mean square error (pg/m?3) (NMSE) 1 (E,E,)?
W2,

Mean bias (ug/m3) (MB) N

Normalised mean bias (%) (NMB) NMB = {-Vzl(lfe -E,)
i=1 EO
Mean fractional bias (%) (MFB) 15 (B, — E,)
S P I
=)
Fractional bias (FB) FB 1 (B —E)

~ N 05(E, +E,)

Fraction within a factor of two (fa2) 05<E,/JE, <20

The third analysis level focuses on the best performing monitoring
networks identified in the previous statistical analysis. This hierarchical layer
focuses on the magnitude of discrepancy between observed and derived
exposure distribution in different segments of the PMio concentration range

and on the spatial variation of individual exposure error.

In order to analyse different segments of the concentration range,
descriptive statistics are calculated for each exposure tertile separately.
Again, minimum and maximum PMio exposures as well as the mean and
median, and 5%/95%" percentile ratio are computed. This provides an
indication if different network set-up strategies perform better in different

areas of low or high concentrations.

To look at the performance of the monitoring networks spatially, error

maps are produced that show the absolute error, i.e. difference, in PMio
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concentrations between observed and estimated concentration at each
residential address. The Moran’s I index establishes if the errors are
clustered, dispersed or randomly distributed over the city (Moran, 1950). Both
the global Moran’s I as well as the Anselin Local Moran’s I are calculated
using the Toolbox in ArcGIS. The global Moran’s I is a measure of spatial
autocorrelation considering both error location and error value
simultaneously. For each error map a Moran’s I value is derived whereas a
value near 1.0 indicates clustering and an index near -1.0 dispersion. A zero
value indicates random spatial error patterns. Anselin Local Moran’s I is a
measure to identify clusters of estimation errors similar in magnitude. Even if
no global clustering is detected, clusters at local level can still be found using
local spatial autocorrelation. A further method to compare the estimated to
the observed PMio exposures spatially at the small scale is the Kappa analysis.
The Kappa statistic is a measure of agreement between observed and
estimated categorizations of two maps while correcting for the chance
agreement between the two categories (Congalton, 1991). For this purpose,
PMio concentrations are grouped into ten categories based on the exposure
classes given in Figure 37. Observed concentration classes are mapped
against the estimated concentrations classes for each 25m grid cell and the
total accuracy is calculated by dividing the number of correctly classified
cells. The accuracy assessment is performed within the ArcView extension

Kappa Analysis 2.0 (Jenness & Wynne, 2005).

The hierarchical approach to assess monitoring network performance and
representativeness described here ensures a detailed analysis of network
performance achieved by the different set-ups. Excluding incrementally
poorly performing networks allows a more in-depth analysis of the remaining
networks and permits conclusions about the monitoring networks that

provide sound exposure estimates.
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3. Results

The first statistical analysis conducted is the comparison of the Q-Q plots.
The Q-Q plot of the observed PMi exposure distribution almost follows a
straight line (Figure 6a) and is therefore very similar to a normal distribution.
Similar Q-Q plots can be achieved with different monitoring networks.
Figure 6 (d-f) show as example three estimated exposure distributions which
also follow a normal distribution. Other monitoring networks, however,
result in exposure distributions that depart from the normal distribution (see
Figure 6 b,c). These monitoring networks are the first to be eliminated from
the further statistical analysis because of their poor representativeness of the
observed exposure distribution. When looking at the number of eliminated
monitoring networks clear differences can be detected between the three
different monitoring strategies. Purposive monitoring networks show very
different results based on the approach taken. Exposure distributions based
on monitoring networks that focus on area of high road density and on areas
that are close to main roads perform better than networks concentrated in

areas of high traffic or population density.

22% of exposure distributions based on monitoring networks focusing on
areas with high road density, for example, follow a normal distribution
whereas only 4% result from the monitoring networks based on high traffic
density show this pattern. The gridded sampling strategy provides the
highest number of monitoring networks that result in normally distributed
exposure estimates (23%), while with the systematic random sampling
strategy 12% of exposure estimates follow a straight line in the Q-Q plot. The
number of monitoring stations within the network does not seem to influence

the performance, a trend present for all sampling strategies.
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Figure 6: Q-Q plots of selected PMu exposure distributions mapped against a normal
distribution: a) observed PMu exposure distribution; b-c) estimated exposure distribution
based on different monitoring strategies not following a normal distribution; d-f) normally

distributed exposure estimates (MS = number of monitoring stations)

Correlations obtained from Pearson’s r and Spearman’s rho support the
general pattern observed in the Q-Q plots. Looking at the correlations
between observed PMio exposures and estimated exposures based on
monitoring networks following the purposive sampling strategy, Pearson’s
and Spearman’s correlation coefficient follow each other with Spearman’s
correlation being on average 10% better than Pearson’s r. In general, there is a
gradual tendency towards more accurate exposure estimates with increased
station density but no clear threshold in the number of stations can be
established below which the correlation coefficient drops steeply. Exposure
estimates based on networks focusing on areas with high road density or

closeness to roads tend to perform better than networks with stations
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concentrated in highly populated areas. The high traffic density strategy
provides the poorest results. Adding background stations to the monitoring
network does not imperatively improve the exposure estimates. In some
cases, the distribution does depart from normal distribution after the
introduction of one or more background stations but the correlation
improves. Monitoring networks with one or more background stations seem
to result in better exposure estimates than networks with four or five

background stations.
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Figure 7: Correlation coefficients comparing observed with estimated exposure estimates

based on random monitoring networks

A similar pattern arises for the probabilistic monitoring strategies. For
exposure estimates, obtained using the systematic gridded as well as the
simple random monitoring strategy, the Pearson’s and Spearman’s correlation

coefficient follow each other with Spearman’s rank correlation performing on
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average 30% better (Figure 7). In general, the Pearson correlation coefficient
provides medium correlations (r > 0.3) and Spearman’s rho large correlations
(r > 0.5). Some monitoring networks result in a very poor representativeness
of exposures, which could be caused by missing monitoring sites close to the

city centre, i.e., highly polluted and populated areas are not represented.

Based on this first level of statistical analysis 431 monitoring networks are
dropped because of poor representativeness of exposure values. 92% of all
purposive networks, 80% of gridded and 90% of all random monitoring
networks are excluded from the further statistical analysis because the
exposure estimates do not correlate with the observed PMio exposures and the
distributions achieved by these monitoring networks do not follow a normal
distribution. This is of significance, not only in terms of representativeness of
these monitoring networks, but normally distributed data is a requirement for
many of the following statistical test. Excluding almost 90% of considered
monitoring networks is a large number but this will allow for a more detailed
statistical exploration of the better performing monitoring networks. A visual
exploration of some of the excluded monitoring networks in relation to the
PMaio concentration surface as well as land cover and the road network in the
urban simulation does not give any conclusive indications of why the

monitoring networks would result in low representativeness.

The exposure estimates of the remaining 57 monitoring stations are
investigated more closely in the second layer of the statistical analysis. The
first statistical test performed is the Kolmogorov-Smirnov test, which checks
the null hypothesis that two samples are drawn from the same distribution.
This hypothesis has to be rejected for all estimated exposure distributions
because of very low p-values (0.000). As the Kolmogorov-Smirnov test does
not provide conclusive results, it cannot be reasoned that the estimated

exposures and the observed exposures are drawn from the same distribution.
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A reason for this could be that Kolmogorov-Smirnov test is a very
conservative test, able to detect very small differences in the samples. The
high number of exposure estimates also gives the test high statistical power to
detect these small differences. The Independent samples t-test produces a
similar result. Only one monitoring network, a random monitoring set-up
with 32 stations, results in an exposure distribution, which, if compared with
the observed exposures produces a p-value > 0.00. A better way, therefore, is
the visual comparison of the distribution shapes. The cumulative frequency
plots give an indication of the shape of the estimated exposure distributions

compared to the observed PMo distribution.
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Figure 8: Cumulative frequency plots of selected exposure distributions based on the

gridded monitoring strategy

Figure 8 shows as an example selected estimated exposure distributions
based on the gridded monitoring strategy in comparison to the observed

cumulative PMio exposure distribution.
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Gridded monitoring networks below a 2 x 2 km station density result in
exposure estimates that follow the observed cumulative PMio distribution
very closely. Above that threshold, the increments increase and the curve
departs more and more from the observed PMiw curve. This trend, higher
stations density result in better fitting cumulative distribution, can also be
seen for the other monitoring strategies. But no clear threshold in the number
of stations can be detected which would result in a significantly decreased

performance.

The descriptive statistics shows clear differences between the network
strategies. Both minimum PMio concentrations as well as the city average
concentrations are very close to the observed vales for exposure estimates
derived from gridded and random monitoring stations. But maximum values
do not reach the levels observed in some high concentration locations close to
roads. Exposure estimates based on purposive strategies on the other hand,
highly over-predict the minimum concentrations for most networks as well as
the city average. Maximum concentrations are higher but still do not reach
the level of the observed PMio concentrations. Again, no clear trend can be
detected in terms of number of stations and network performance for any of

the sampling strategies.

Results of the performance valuation with regard to introduced bias and
errors are summarised in Table 4. Statistics are displayed for the monitoring
networks that result in the best and the poorest performance for each of the
three monitoring strategies. In general, the gridded and random strategies

perform better than the purposive sampling strategy.
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Table 4: Model evaluation results and descriptive statistics for best and worst performing monitoring set-ups for each strategy

Monitoring set-up strategy No of R? RMSE NMSE MB NMB MFB FB Fa2 Min Max Mean 5th/95th
stations pg/m?3 pg/m?3 pg/m? (%) (%) (%) pg/m?3 pg/m?3 pg/m®  ratio
1.25 x 1.25 km grid 99 0.15 7.42 0.80 -0.620 -10.7 -5.8 -0.11 74.85 0.19 20.98 5.2 0.04
2.25x 2.25 km grid 30 0.08 7.57 1.31 -1.329 -23.0 -15.3 -0.26 62.49 0.23 15.29 4.5 0.05
3.75 x 3.75 km grid 12 0.08 7.63 1.39 -0.704 -12.2 -3.8 -0.13 55.71 0.32 11.81 5.1 0.07
4.4 x4.4km grid * 9 0.08 7.92 1.75 -3.042 -52.6 -46.2 -0.71 49.10 0.26 7.58 2.7 0.05
random 8 0.12 7.53 0.94 -2.191 -37.9 -4.8 -0.47 64.89 1.18 6.39 3.6 0.18
random 32 0.10 7.81 1.06 -0.165 -2.9 1.0 -0.03 63.28 0.51 18.73 5.6 0.03
random 45 0.15 7.56 0.99 -2.633 -45.6 -26.1 -0.59 68.08 0.34 6.58 3.1 0.09
random * 31 0.08 7.84 1.71 -2.573 -44.5 -37.8 -0.57 51.76 0.29 19.43 3.2 0.09
purposive — population density 43 (incl. 0.07 10.02 1.82 1.427 24.7 29 0.22 52.83 0.30 35.84 7.2 0.01
5 background)
purposive — road density 50 (incl. 0.11 22.28 7.09 18.484  319.8 130.8 1.23 10.04 1.73 55.42 24.3 0.17
1 background)
purposive —road distance 22 (incl. 0.11 27.72 5.97 17.813  308.2 100.4 1.21 22.51 0.48 106.34  23.6 0.04
4 background)
Purposive — road distance * 16 0.09 28.27 9.47 23.822 4121 139.6 1.35 6.65 9.25 81.87 29.6 0.17

* Worst performing monitoring set-up for each strategy
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All exposure estimates based on random or gridded monitoring networks result
in means square errors and mean biases of approximately the same magnitude
(NMSE min: 0.84 pug/m3, max: 2.44 ug/m? Fa2: 49.1% - 75.4%). Monitoring networks
based on purposive strategy, however, seem to result in an extreme over-prediction
of PMio exposures, especially in terms of mean bias (NMSE min: 1.82 ug/m?, max:
9.68 ug/m? Fa2: 6.65% - 52.83%), as has been seen in the descriptive statistics. Only
two exposure estimates based on a monitoring network with 43 monitoring stations
which concentrate on areas of high population density give similar low errors to the
gridded and random networks. The maximum mean fractional bias, for example, is
up to 3-fold higher in monitoring stations based on the purposive approach (MFB
max: 139.6% over-prediction based on purposive network with 16 stations close to
roads) than the exposure estimates derived from gridded and random networks
(MFB max: 46.2% under-prediction based on gridded network with 9 stations). In
general, gridded and random networks seem to slightly under-predict PMio
exposures while purposive networks even with five background stations greatly
over-predict exposures. The twelve monitoring networks listed in Table 19 will be
further investigated in terms of spatial error distribution in the third layer of
statistical analysis. The three best performing monitoring networks for each of the
three sampling strategies are explored, as is the worst-case monitoring network in

order to find the reasons for the poor performance.

The pattern observed for the descriptive statistics also holds when looking at
each concentration tertile separately. The first and second PMuo tertiles are well
represented by all considered monitoring networks. Minimum and maximum PMuo
concentrations as well as the mean and median of the estimates are very close to the
observed exposures, except for purposive monitoring networks focusing on
closeness to roads and high road density. These networks result in an up to 8-fold
over-prediction of exposure estimates. Only maximum PMio concentrations in the

third tertile are better represented by the road based purposive networks then with
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any other monitoring network. Overall, gridded monitoring networks with a high
station density (number of monitoring stations > 20) result in exposure estimates
whose descriptive statistics are very similar to the observed values for all three

tertiles.

Gridded network: 1.25 x 1.25 km spacing, 99 stations
max over-prediction: 19 pg/m’
max under-prediction: 133 ug/m’*

Gridded network: 4.4 x 4.4 km spacing, 9 stations
max over-prediction: 7 pg/m’
max under-prediction: 138 ug/m?

i el i
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Figure 9: Spatial distribution of absolute error in PMu exposures for selected monitoring

networks

When looking at the performance of the different monitoring networks
visually, a similar picture emerges. Figure 9 shows a selection of error maps

resulting from different monitoring networks. Areas shaded in green under-predict
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PMio exposures and areas shaded in red over-predict PMio exposures at the given

residential location, beige indicates a good fit.

The maps confirm that the gridded and random monitoring networks
generally provide good results although they under-predict the very high PMio
exposures very close to main roads and the motorway. The main errors here seem to
be located close to the city centre (slight over-prediction in case of the 1.25 x 1.25 km
gridded network) and along the main valley through the city from North East to
South West. This is also the axis of the main transport route through the city and
along which most of the industrial land can be found. Concentrations around this
area are therefore comparable high, which causes in case of some monitoring
networks, such as the 4.4 x 4.4 km gridded network, a slight exposure under-
prediction. The purposive monitoring strategies, on the other hand, result in a very
widespread over-prediction of PMio exposures. Only the highest concentrations

close to the main roads are represented well.

The Moran’s I confirms with high significance that the absolute errors in
estimated PMio exposure resulting from different monitoring networks are spatially
clustered. At a local level, the Anselin Local Moran’s I further underlines that the
errors cluster in areas of high PMio concentrations, the city centre and close to the

main transport routes.

The Kappa statistic allows for a more detailed investigation of the exposure
estimates in the different exposure ranges. The ten exposure categories (see Figure
37) are evaluated in terms of class accuracy, the corresponding class membership for
observed and estimated exposures, and in terms of overall, city wide, accuracy. The
lowest five exposure classes, representing PMio concentrations below 7.5 pug/m3, are
represented very well by gridded monitoring networks with a class accuracy of
>50% in case of the 1.25 x 1.25 km gridded network. For higher exposure classes the

accuracy declines gradually. The highest exposure classes >50 ug/m® are not
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represented. The overall accuracy for gridded monitoring networks increases with
the number of monitoring stations and ranges from 22% to 45%. Similar pattern can
be described for the random networks with >40% class accuracy for the lower
exposure classes and no representation of the high exposure classes. Some random
monitoring networks, however, also do not represent lower exposure classes very
accurately (<30%) but the overall accuracy is slightly better than for the gridded
networks with a range of 27% to 44%. No clear trend can be seen towards higher
accuracy with increasing number of stations. For purposive monitoring networks,
the class accuracy tends to decrease further, <30% for most exposure classes, but the
represented exposure range increases. Higher exposure classes are represented by
most purposive monitoring networks although with a low accuracy <20%. The
overall accuracy is very low, ranging from 4% for networks, which focus on high

road density, to 27% for networks with focus on highly populated areas.

4. Discussion

The study presented here provides an attempt to quantify the representativeness
of PMio monitoring networks within an urban setting. Three different monitoring
strategies described in the environmental sampling literature are considered for the
analysis. Purposive sampling, systematic gridded sampling and monitoring
networks with randomly defined station locations are investigated with regard to
their representation of urban exposure estimates. Some important conclusions can
be drawn from this analysis. One of the main findings is that there is no clear trend
towards a better performance of monitoring networks with increasing number of
stations. Some tests indicate a slight trend in this direction, such as an increase in
correlation between observed and estimated exposures, but overall the evidence is
not strong enough to support this theory. This suggests that the location of the

stations within a monitoring network is more important than the number of stations.
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Monitoring networks performing best in the analysis do not concentrate on one
area but have a widespread monitoring coverage in areas of higher PMio
concentration as well as effectual background coverage. This is not achieved with
the purposive modelling strategy. The purposive monitoring strategy is sufficient
for targeting certain populations or exposure categories but not to represent the
overall city population, even if used in conjunction with background stations. This
is true for all four approaches tested in this analysis. Overall, the approach, which
targets areas with high road density, provides the best results. Networks with focus
on high trafficked areas, on the other hand, represent exposures inadequately for all
analysed networks. Responsible for this pattern is the overrepresentation of highly
polluted areas close to the motorway and along the main transport axes, which are
heavily monitored because of their high traffic volume. In contract, the high road
density approach also includes areas of low traffic counts such as minor roads and
therefore represents a broader PMio concentration range, as is the case for the
proximity to road approach. The purposive approach, which concentrates the
monitors in areas of high population density, provides results similar to the high
traffic density approach. The estimation of the exposure distribution in the city is
generally inaccurate and individual exposure is highly overestimated, except for two
of the analysed monitoring networks. Population density is highest close to the city
centre, which also hosts some of the highest PMio concentrations in the city. These
areas are therefore overrepresented in the networks, which consequently results in
biased exposure estimates. The introduction of background stations does not

counterbalance this trend.

Most gridded as well as several random monitoring networks outperform the
purposive networks in terms of representativeness of exposure. Gridded monitoring
networks generally provide good results in terms of both estimating exposure
distribution and individual exposure. The analysis further suggests that a station

density of 2 x 2 km or higher provides the best exposure estimates. Randomly
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selected monitoring networks have the potential to result in exposure estimates close
to the observed because they counter systematic bias. This is confirmed in the
analysis. The random strategy results in some very representative monitoring
networks. This result is however not reproducible because chance plays a very
important role in distributing the monitoring stations within the urban area
(Fernandez et al., 2005) which is reflected in some very poorly performing monitoring
networks. This might be overcome by a significant increase in the number of

monitoring stations.

In order to achieve a high level of representativeness in a monitoring network,
the right balance between the representation of the spectrum of PMio concentrations
and the population density has to be found. The results of this analysis suggest a
gridded monitoring strategy of an adequate station density (>20 monitoring sites) in
conjunction with some stations in areas of high population density and a few
stations in highly polluted areas. This would allow to measure concentration peaks
and give a solid coverage of the overall concentration variation in the urban area.
Thereby, it is very important to measure background concentrations effectively
because otherwise the exposure estimates for a large part of the population will be

over-predicted, as shown in the analysis.

Some of the considered monitoring networks result in exposure estimates that
are very far from the actual exposure scenario in SIENA. This is true for all three
monitoring strategies. The analysis could not find any conclusive reasons for this
pattern apart from the ones discussed above. Further investigation is needed to
determine the underlying effects that result in some very poor performances by
monitoring networks that are apparently very similar in composition than networks

that perform very well.

One of the factors influencing the results of this analysis is surely the lack of

temporal variability in PMio concentrations. The analysed concentration patterns
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present a snapshot in time and both daily concentration fluctuations and long-term
temporal changes are largely ignored. Possible effects of temporal variability are not
included in this study to avoid the concealment of any design specific effects.
Monitoring programs implemented for epidemiological studies typically include
sampling periods of one or two weeks (Aguilera et al., 2008, Henderson et al., 2007;
Wheeler et al., 2008), or in some cases even longer (Ryan et al., 2007) and inevitabely
contain some temporal variability. This fact has to be reflected in the study specific

network design.

Another factor, which influences the results, is the method used to assign people
with exposure values. The method chosen here, to assign people with concentrations
measured at their nearest monitoring station, is used with the incentive to reduce the
errors potentially introduced by more sophisticated modelling techniques which
would make interpretation of the results very difficult. The use of different exposure
matrixes and proxies is explored elsewhere in the literature (Huang & Batterman,

2000; Marshall et al., 2008) and within INTARESE.
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